Black-Scholes-Merton Structural Model Governing Equations

We may use equity prices and fundamentals to estimate the default probability of a company. It has been shown (Merton 1974) that the company’s equity may be modeled as an option on the assets of the company. We may then use the solution to the Black-Scholes-Merton equation for a European call option (1-4) to value the equity. This yields a structural model that relates the equity value to the value of the unobservable asset values.

1. \[E_0 = D_0 + A_0 \Phi(d_1) - L_T e^{-r_f T} \Phi(d_2) \]

Where

2. \[\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-z^2/2} \, dz \]

And

3. \[d_1 = \frac{\ln \frac{A_0 - D_0}{L_T} + \left(r_f + \frac{\sigma_A^2}{2} \right) T}{\sigma_A \sqrt{T}} \]

4. \[d_2 = d_1 - \sigma_A \sqrt{T} = \frac{\ln \frac{A_0 - D_0}{L_T} + \left(r_f - \frac{\sigma_A^2}{2} \right) T}{\sigma_A \sqrt{T}} \]

The distance to default is \(d_2 \) and the risk-neutral probability that the company will default on the debt is \(\Phi(-d_2) \). For our purposes, we will assume a constant time horizon of one year, setting \(T=1 \).

Data point definitions used as inputs; all are in local currencies:

\(E_0 = \) the current value of the aggregated company equity.

\(D_0 = \) total dividends to be paid within one year using forward dividend, else historical dividends.

\(L_T = \) liabilities due within one year using short-term liabilities, else long-term liabilities

\(r_f = \) logarithmic risk-free rate (annual rate).

Data Points That Are Calculated or Solved For

\(\sigma_E = \) standard deviation of logarithmic equity returns (annual) (instantaneous value). This is accomplished by using the exponentially weighted moving average, or EWMA, estimate.

\(A_0 = \) the current value of the firm’s assets in local currency.
\(\sigma_A = \) standard deviation of logarithmic asset returns (annual) (assumed to be constant).

Exponentially Weighted Moving Average Estimation of Equity Volatility

Equity volatility, \(\sigma_E \), is the most important parameter in the Black-Scholes-Merton model. Therefore, it is important to have an estimation methodology that responds quickly to recently observed changes in the volatility of equity returns. Exponentially weighted averaging is a standard method of achieving this.

Let \(P_t \) denote the closing share price on day \(t \) and \(r_t \) denote the daily logarithmic return on equity. We have:

5. \(r_t = \ln(P_t) - \ln(P_{t-1}) \)

Let \(\lambda \) denote the exponential decay rate. We set \(\lambda \) to value in the range 0.97. We calculate the exponentially weighted average daily logarithmic return recursively as follows:

6. \(\mu_{1t} = (1 - \lambda) r_t + \lambda \mu_{1t-1} \)

We initialize \(\mu_{10} = 0 \).

Similarly, we calculate the exponentially weighted average daily logarithmic return squared recursively as follows:

7. \(\mu_{2t} = (1 - \lambda) r_t^2 + \lambda \mu_{2t-1} \)

We initialize \(\mu_{20} \) to an initial estimate of \(\sigma_E^2 \) NTY, NTY being the assumed number of trading days per year, which we take to be 252.

Our estimate of the annualized standard deviation of logarithmic equity returns described below on day \(t \) is:

8. \(\hat{\sigma}_E_t = \sqrt{NTY (\mu_{2t} - \mu_{1t}^2)} \)

Solve for Asset Value and Standard Deviation of Log Asset Returns

We now would like to solve for the asset value and asset volatility. To do this, we need another equation to solve for these two variables. Luckily, we may introduce another equation via Ito’s Lemma to solve the set of nonlinear equations that implicitly define the asset value and volatility.

9. \(\sigma_E E_0 = \frac{\partial E_0}{\partial A_0} A_0 \sigma_A = \Phi(d_1) A_0 \sigma_A \)

Equations (1-4, 9) must now be solved. This may be done by recasting the problem as an optimization problem.

Let us write the zero set of equations (1) and (9) as:

10. \(G(A_0, \sigma_A) = E_0 - D_0 - A_0 \Phi(d_1) + L_T e^{-rT} \Phi(d_2) \)
11. \(H(A_0, \sigma_A) = \sigma_E E_0 - \Phi(d_1) A_0 \sigma_A \)

This set of equations can be solved for by using a constrained optimization procedure (we use Nelder-Mead) using the following objective function:

12. \(\min_{A_0, \sigma_A} F(A_0, \sigma_A) = G^2 + H^2 \)

Use Values to Calculate Distance to Default and Probability of Default

Once we have solved for the previous values, we can calculate the distance to default:

13. \(d_2 = d_1 - \sigma_A \sqrt{T} = \frac{\ln \frac{\Delta t}{\sigma_A} + \left(r_f - \frac{\sigma_A^2}{2} \right) T}{\sigma_A \sqrt{T}} \)

And the probability of default is:

14. \(\Phi(-d_2) \)
About Morningstar® Institutional Equity Research™

Morningstar, Inc. is a leading provider of independent investment research in North America, Europe, Australia, and Asia. Morningstar offers an extensive line of products and services for individual investors, financial advisors, asset managers, and retirement plan providers and sponsors. Morningstar provides data on approximately 500,000 investment offerings, including stocks, mutual funds, and similar vehicles, along with real-time global market data on more than 15 million equities, indexes, futures, options, commodities, and precious metals, in addition to foreign exchange and Treasury markets. Morningstar also offers investment management services through its investment advisory subsidiaries.

About Morningstar Indexes

Morningstar® Indexes combine the science and art of indexing to give investors a clearer view into the world’s financial markets. Our indexes are based on transparent, rules-based methodologies that are thoroughly back-tested and supported by original research. Covering all major asset classes, our indexes originate from the Morningstar Investment Research Ecosystem — our network of accomplished analysts and researchers working to interpret and improve the investment landscape. Clients such as exchange-traded fund providers and other asset management firms work with our team of experts to create distinct, investor-focused products based on our indexes. Morningstar Indexes also serve as a precise benchmarking resource.

For More Information

For any queries reach out to us via our communication page.

©2016 Morningstar.

Any matter arising from undocumented events will be resolved at the discretion of the Morningstar Index Committee. The information in this document is the property of Morningstar, Inc. Reproduction or transcription by any means, in whole or part, without the prior written consent of Morningstar, Inc., is prohibited. While data contained in this report are gathered from reliable sources, accuracy and completeness cannot be guaranteed. All data, information, and opinions are subject to change without notice.